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Abstract- In this paper, a nonlinear functional differential equation is studied in in two 

point boundary value problem in Banach algebra. The existence of solution functional 

differentia equation is proved by the under certain general Lipschitz and Caratheodory 

conditions. Also we have proved the existence of external solution.  
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INTRODUCTION: 

In Given a closed  and bounded interval  J = [a, b],  a < b,  of real numbers R, consider the 

nonlinear two point functional boundary value problem ( in short  FBVP ) of second order 

neutral differential equation 

X (t)         

           = g (t, x ( (t), x ((t))    a.e.  t  J, 

       f(t, x( (t) ))        (1.1) 

         

                 x(a) = x(b)=0, 
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where  f: J  R  R - {0},  g: J  R  R  R and  , ,  : J J . 

 By a solution of  the above  FBVP we mean a function  x AC
1
(J, R) which 

satisfies the differential equation and the boundary condition of (1.1), where  AC
1
(J, R)  is 

the space of all continuous real-valued functions on  J=[a, b], whose first derivative is 

absolutely continuous on  J. Note that the second derivative of the solution  x(t)  exists for 

almost all  t J. The main idea is to write (1.1) in equivalent operator equation  x=Ax Tx  

and to prove that it has a solution in  AC
1
(J, R). 

 The  FBVP (1.1)  has  been studied in literature before but results of this paper are 

new in the theory of differential equations in Banach algebras. The special cases of  FBVP  

(1.1) have already been discussed in the literature by several authors for various aspects of 

the solution. For example, if  f(t, x) = 1  whenever  (t, x) J  R   and  (t) = (t) = t   for 

all  t J, then  FBVP (1.1) reduces to 

  -x( t ) = g( t, x(t), x(t) )  for a.e.  t J,    (1.2) 

  x( a ) = x( b ) = 0.        

There is a abundance literature on BVP (1.2), see Baily, Bernfield and Lakshmikantham. 

The importance of  FBVP (1.1) in applications is yet to be investigated. However, it is new 

to literature on the theory of nonlinear two point boundary value problems. This is the main 

motivation to study FBVP (1.1) in the present paper.  

 

PRELIMINARIES:  
 

Let  X  be Banach space with a norm  ||.||. A mapping  T: X X  is called Lipschitz 

operator  with a Lipschitz constant    if 

  || Tx –Ty ||    || x-y ||   for all  x, y  X.  (2.1) 

Further if 0 <  < 1, T is called a contraction with a contraction constant. 

Operator T:   X,      X,  is called compact if it is continuous and  T(  )  is 

relative compact subset of  X. If  T( S )  is relative compact subset of X whenever  S    is 

bounded, then the operator  T  is totally bounded. The operator  T  is completely continuous 

if it is continuous and totally bounded. Note that every compact operator is completely 

continuous, but the converse is not true. However the previous notations are equivalent on 

a bounded subset of  X.   

 Our results are based on a nonlinear alternative of Leray-Schauder type theorem 

which is an application of  Theorem 2.3 in [3]. 

 

Theorem 2.1 : Let  K  be a convex subset of a normed linear space  E, U an open subset of  

K  with  0  U,  and  N : U  K  a continuous and compact map. Then either  

(1) N  has a fixed point in U; or, 

(2) there  is  an  element  u  of  the boundary  U and  a real number   
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       (0, 1) such that  u =  N u. 

We prove first a theorem concerning the existence of a solution of the operator     

equation  x = Ax Tx  in Banach algebra  X. 

 

Theorem 2.2 :  Let  X  be a Banach algebra and  B(0, r),  0 < r,  a closed ball centered at 

the origin. Assume that  A : X  X  and  T : B(0, r)   X  are two operators such that 

(a)  is completely continuous and  M = sup { ||Tx|| | x B(0, r) } and 

(b) A  is Lipschitz operator in with a Lipschitz constant    such that  M < 1. 

Then either 

(i) the operator equation  x = Ax Tx  has a solution in  B(0,r); or, 

(ii) there is an element  u  of the boundary  B(0, r)  and real number   (0, 1) 

such that   u = A ( (1/) u )Tu. 

Proposition 2.1 :  Let   X  be  a  Banach  algebra,  B(0, r1)  and  B(0, r2),  

0 < r1, r2, closed balls centered at the origin. Assume that  A : B(0, r1) X and  T : B(0, r2) 

  X  are two operators such that  

(a) T is completely continuous and M = sup {||Tx|| | x B(0, r2 )}, and 

(b) A[B(0, r1)]  B(0, r1/M ) and  A  is Lipschitz operator in  B(0, r1) a Lipschitz 

constant  , M < 1. If  r1   r2 then the operator equation  x = Ax Tx  has a 

solution in B(0, r1). Otherwise either 

  (i) the operator equation  x = Ax Tx  has a solution in B(0, r2); or, 

 (ii) there is an element  u  of the boundary B(0, r2)  and  real number     

       (0, 1) such that  u = A( (1/u) )Tu. 

Lemma 2.1 :  AC
1
(J, R ) is a Banach algebra with respect to the multiplication  (xy)(t) = 

x(t) y(t),  t  J. We denote by  L
1
(J, R ) the space of all Lebesgue integrable functions on  J  

with the norm 

          b 

  ||x||L1 =     | x(t) | dt .      (2.3) 

        a 

 

Definition 2.1 :  A function  g : J  R  R  R  is said to be Caratheodory function if  

(1) t   g( t, x, y )  is measurable for all  x, y  R , 

(2) ( x, y )   g( t, x, y ) is continuous for almost all  t  J . 
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EXISTENCE RESULT: 
 

We consider  the  following  set  of  hypothesis   imposed  on  functions 

  f : J  R  R  R \ {0},  g : J  R  R    R   and   , ,   : J   J : 

 (A0)  The function  g( t, x, y )  is a Caratheodory function. 

 (A1)  There exists a function   L
1
( J, R+ ) and an increasing   

function    : R+  R+  such that 

  g ( t, x, y )|    ( t )  ( max {|x|, |y|} )    (3.1) 

for a.e.  t  J  whenever   x, y  R. 

(A2)  The function   : J  J  has absolutely continuous first derivative  and 

  m1 = sup |  (t) |,      (3.2) 

                       tJand  functions     and   : J   J  are continuous. 

 (A3)  There  is  a  real  number  R > 0  and bounded functions  p,  p1  

and  p2 : J   R+  such that 

  | f ( t, x ) – f ( t, y ) |     p(t) | x - y |, 

  | f1( t, x ) – f1( t, y ) |    p1(t) | x - y | and 

  | f2(t, x) – f2(t, y) |   p2(t) | x - y | for all t J whenever |x|, |y| R,  

          and the partial derivatives  fj( t, x ), j = 1, 2, are continuous in  t  for each  x, |x|   R  

The  FBVP (1.1) can be written in equivalent  functional integral equation. 

  The FBVP (1.1) is equivalent to the  functional integral equation ( in short  FIE) 

                       

 x( t ) = f( t, x( (t) ))   G( t, s ) g( s, x( (s) ), x( (s) )) ds                       (3.4) 

 

for all  t  J,  where  G : J   J  R   is the Green’s function 

 

      s – a, a   s    t   b ;  

 G( t, s ) =         (3.5) 

      t – a,    a   t   s   b .  

 

 It is easy to see that  G( t, s )  is continuous in  J   J  and  Gt( t, s )  is continuous in  

( a, b )  ( a, b) \ {( t,  t) | t  J }  and they satisfy the inequalities 

 | G( t, s ) | = G( t, s )    b– a,  and 

         0,  a < s < t < b, 

 | G1( t, s ) | = G1( t, s ) =            1. (3.6)  

         1,   a < t < s < b 

 

Theorem 3.1 :  Assume that there exist real numbers  r > 0  and  R > 0  such that the 

hypotheses  (A0) - (A3)  hold and 

 M( r ) max{ M0 , max{ M0, m1c2 } + m1M2 R } < 1,             (3.7) 

where  M( r )= max { 1, b-a} ||||L
1

  ( r ), M0 = sup  p( t ),  M1 = sup  p1( t ),  

                                                                              t J           t J 

        M2 = sup  p2( t ),  c2 =  sup { | f2( t, 0 ) || t  J } , 

              t J            t J  

 max { M0R+c0 , m1M2R
2
+ ( M1 + m1c2 )R + c1 }   R/M.           (3.8) 
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Where  c0 = sup{ | f( t, 0 ) || t  J } and  c1 = sup{ | f1( t, 0 ) || t  J }, and  

 

 0
0 0 1 1 2 2

0
1

,

( ) max
max 1,

M
M r c M m M R c r

b a b a
r M r

b a c
c

b a

  
          

   
  

               (3.9) 

Then  FBVP (1.1) has a solution  xAC
1
(J, R)  with  ||x||AC

1
  r. 

Proof :  Let   x = AC
1
( J, R ) and  consider  a closed  balls  B( 0, r ) ,  r > 0,  and  B(0, R),  

R > 0,  in  X  where  r satisfies the inequalities  (3.7) and (3.8). 

 We show that the first derivative  f1( t, x( (t) )) + (t) x((t) ) f2( t, x( (t) ))  of  f( 

t, x((t) ))  is absolutely continuous for each  x  B(0, R) so that f(t, x((t)))  AC
1
(J, R)  

whenever  x  B(0, R). Assume that  yB(0, R),  > 0,  N  is a  positive integer and  non  

overlapping  intervals  [ tk , k ] J, k = 1, 2, …, n.  Condition (A3) that implies that 

 

            n                      n 

 | f1(tk, y(tk)) – f1(k , y(k )) |        |  f1(tk , y(k )) – f1(k , y(k )) | 

         k=1                   k =1 

           n 

      +     | f1(tk , y(tk )) – f1(tk , y(k )) | 

         k =1 

     n                 

                                                | f1(tk , y(k )) – f1(k , y(k )) | 

                                                       k=1 

         n 

      +      p1(tk )| y(tk ) – y(k ) |. 

  k=1 

 

The same condition also implies that there are positive number  k ,  k = 1, 2, …, n such that 

for each  k = 1, 2, … n 

 

| f1(tk , y(k )) – f1(k , y(k ))| < /2N,  whenever  |tk  – k |< k  .      (ii) 

 

Denote  Mp = max { p1( tk ) | k = 1, …, N }. Since  x is absolutely continuous, there is a  0  

> 0  such that 

 

 n                       n 

     | y(tk )- y(k )| < /2 Mp ,  whenever        | tk  – k | < 0 .         (iii) 

k=1                     k=1 

 

Choose    = min { k  | k = 0, 1, …, N }, then inequalities (i) - (iii) imply that 
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 n          n 

    | f1( tk , y(k ) ) – f1( k , y(k ) )| < ,  whenever   | tk  – k | <  , 

k=1         k=1 

 

so that  f1( t, y(t) ) is absolutely continuous whenever  y  AC
1
(J, R). Since  (t)  is 

absolutely continuous,  f1( t, x((t) ) is absolutely continuous whenever  x  AC
1
( J, R ). 

The proof that f2( t, x((t) ) is absolutely continuous whenever  x  AC
1
( J, R ) is similar. 

Since  g  is a Caratheodory function and satisfies inequality (3.1),  

then g( s, x((s) ), x( (s) ))  L
1
( J, R )  whenever  x  B(0, r). 

Thus  integral over [a,b] is 

  G(t, s) g(s, x((s)), x((s))) ds  AC
1
(J, R)  whenever  x  B(0, r).  

Define operators  A : X   X  and  T : B(0, r)  X  by 

 Ax( t ) = f( t, x((t)) ), t  J                            (3.10) 

and                                  

 Tx( t ) =   G(t, s) g( t, x((s)), x((s)) ) ds,  t  J.              (3.11) 

 

Now  FBVP (1.1)  and  FIE (2.3)  have the same solutions which also are the solution of 

the operator equation 

 Ax( t )Tx( t ) = x( t ), t  J.     (3.12) 

We shall show that the operators  A  and  T  satisfy all the conditions of Theorem  2.2. First 

we show that the operator  T  is continuous and compact in   B(0, r). Let  (xn )

 n = 0   be a 

converging sequence in B(0, r) such that  

                            limn  xn = x  

                     i.e.   max{ sup{ | x(t) – xn(t) | | t  J },  

                             sup{ | x(t) - xn(t) | | t  J } }   0 when  n .  

Then by assumption (A0) and (A1) and Lebesgue Dominated convergence theorem 

      lim Txn(t) =   G(t, s) g(s, xn((s)), xn ((s))) ds   n 

                     =  G(t, s) g(s, x((s)), x((s))) ds = Tx(t), t  J 

and 

      lim (Txn)(t) =  G1(t, s) g(s, xn((s)), xn ((s))) ds n            

                =   G1(t, s) g(s, x((s)), x((s))) ds = (Tx)(t),   t  J. 

Thus  T  is continuous in  B(0, r). 

 Assume that  y  is an element of  B(0, r). Then  ||y||AC
1   r  and by the condition  

(A1) and inequalities (3.6), 

   |Ty(t)|    G(t, s)| g(s, y((s)), y((s)))| ds  

               (b - a) (s) ( max{ | y((s))|, y((s)) )| } )ds  

               (b – a)||||L
1
 (r) t  J. 
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Furthermore,      |(Ty) (t)|     G1(t, s)| g(s, y((s)), y((s)))| ds  

                  ( s ) ( max {| y((s)) |, y((s)) ) | } )ds  

     ||||L
1
 (r),  t  J. 

Hence 

 ||Ty|| AC
1    M(r) = max { 1, b-a }||||L

1
 (r), whenever  y  B(0, r). 

 

As  a  result  every  sequence (Txn )0
   

 is  uniformly  bounded  when ( xn )0

  is  

a sequence of  B(0, r). We show next that the image  T [B(0, r)]  of the closed ball B(0, r) is 

equicontinuous. Let  x  B(0, r) and  a v t b. Then by (3.5) 

 

 | Tx(t) – Tx(v)|     |G(t, s) – G(v, s)||g(s, x((s)), x((s)))| ds 

        |G(t, s)– G(v, s)|(s)(max{|y((s))|, y((s)))|}) ds 

  (t – v) (s) (r) ds = (r) |||| L
1
 ( t-v ) 

and 

      | (Tx)(t) – (Tx)(v)|     |G1(t, s) – G1 (v, s)||g(s, x((s)), x((s)))| ds 

                    (s) ( max{| y( (s))|, | y( (s) ) )|}) ds 

                           = (r) v (s) ds . 

Hence 

 || Tx(t) – Tx(v) ||AC1     (r) max{| t - v| || ||L1, |  (s) ds | } 

whenever  x  B(0, r)  and   t, v  J, where 

 lim  max { | t - v| ||||L1, | v (s) ds | } = 0, 

t v 

Since    L
1
( J, R+) . As a result the set  T [ B(0, r) ] is equicontinuous in AC

1
 ( J, R),  and 

consequently  T  is a compact operator on  B(0, r)  by Arzela-Ascoli theorem. 

 We consider now the operator  A  defined by (3.10) and show first that  

 A[ B(0, R) ]  B( 0, R/M ). Suppose that  x  B(0, R).  

Then  

 | Ax(t) | =  |  f(t, x( (t) )) |   | f( t, x( (t) )) – f( t, 0)| + | f( t, 0 )| 

       p(t ) | x(  (t) ) | + | f( t, 0 ) |   M0R + c0 , for all  t  J, 

where  M0 = sup { p( t) | t  J } and  c0 = sup { | f( t, 0 )| | t  J }, and   

 | ( Ax)(t) |     | f1(t, x( (t) )) – f1( t, 0)| + | f1 ( t, 0 )| 

   + | (t) || x ( (t) ) | ( f2 ( t, x(  (t) )) – f2( t, 0)| + | f2 ( t, 0 )| 

  p1 (t) | x( (t) )| + | f1( t, 0)| 

+ m1| x( (t) ) | (p2( t)| x( (t) ) | + | f2( t, 0 )| ) 

     M1R + c1 + m1R ( M2R + c2 ) 

= m1M2R
2
 + ( M1+ m1c2 )R + c1,  for all   t  J, 

where  m1 = supt J |( t )|,  M1 = sup{ p1( t )| t J }, M2 = sup{ p2(t)| t J }, 

c1 = sup{ | f1( t, 0 )| | t J }  and  c2 = sup{ | f2( t, 0 )| | t J }.  

According to inequality (3.8) 

 max { M0R + c0 ,  m1M2R
2
 + ( M1+ m1c2 )R + c1 }   R/M , 

so that  
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 ||Ax|| AC
1
 = max{sup |Ax(t)|, sup |(Ax)(t)|}  R/M  whenever xB(0, R). 

  t J         t J 

Assume that  x, y B(0, R). Then by conditions  (A2) and (A3) 

 | Ax(t) - Ay(t)| = | f(t, x( (t) )) -  f(t, y( (t) )) | 

      p(t) | x( (t) ) -  y( (t) )| , for each  t  J, 

so that  

| Ax(t) - Ay(t)|   M0 || x-y ||AC
1
 , for each  t  J,.  (a) 

Moreover, by the same conditions 

| ( Ax)(t) - ( Ay)(t) |    | f1(t, x( (t) )) – f1(t, y( (t) )) |     

 + |(t)| | x( (t) ) f2( t, x( (t) )) – y( (t) ) f2( t, y( (t) ))| 

  p1(t) | x( (t) ) -  y( ( t) )| 

+ m1 ( | x( (t) )| | f2( t, x( (t) )) - f2( t, y( (t) ))| 

    + | f2( t, y( (t) ))| | x( (t) ) -  y( (t) )| ) 

  M1| x( (t) ) – y( (t) )| 

   + m1 ( M2R | x( (t) ) –  y( (t) ) | 

   + (M2R+c2) | x( (t)) – y( (t))| ), for each  t J, 

so that 

| Ax(t) - Ay(t)|   ( M1+ m1M2R )| x( (t) ) –  y( (t) ) | 

         + m1 (M2R+c2) | x( (t)) – y( (t))| )      (b) 

      K0 || x-y ||AC
1
 ,  for each  t  J, 

 

where K0 = max {M1+ m1M2R, m1c2+ m1M2R } = max { M1, m1c2 } + m1M2R.  

Inequalities (a) and (b) imply that 

||Ax - Ay||     || x-y ||AC
1
   whenever  x, y  B(0, R), 

where   = max {M0 , K0} = max { M0 , max { M1,  m1c2 } + m1M2R}. Hence  A  is a  

Lipschitz operator in B(0, R) with Lipschitz constant  , and by inequality (3.7)  M < 1. 

 Thus the conditions (a) and (b) of Proposition 2.1 are satisfied  

 ( r1 = R  and  r2 = r), and hence if  R   r then operator equation  x = Ax Tx  has a solution 

in B(0, R). Otherwise either its conclusion (i) or (ii) holds. We show that conclusion (ii) is 

impossible. 

 Let  u  be a solution of the operator equation 

  (t) = A ( (1/) u(t) ) Tu(t), t  J, 

with  ||u|| AC
1 

= r  for some  0 <  < 1. Then  r   R  and inequalities (1) and (2) imply that 

                           

 | (t)|     f  | ( t,  (1/  ) u( u(t) )) |    G(t, s)| g(s, u((s)), u((s)))| ds  

 

          f  | t,     (1/  )  u( u(t) )  – f (t, 0)  + | f (t, 0)|  ( b - a )||||L
1
 (r) 

               

    [ M0 | u( (t) ) | + c0 ] ( b-a ) |||| L
1
 (r),    t  J,                        (c) 

Similarly for, 

      where  M0 = sup { p(t) | t  J }  and  c0 = supt J | f(t, 0) |,  and  

 

   [M1 | u( (t) )| + c1 + | u( (t)) | | (t)) | (M2R + c2 )] 
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( b- a ) |||| L
1
 (r) 

+ [ M0 | u( (t) ) | + c0 ] |||| L
1
 (r), t  J,                          (d) 

 

where  M1 = sup{ p1(t)| tJ },  M2 = sup { p2(t) | t J }, c1 = supt J | f1 (t, 0) | and  c2 = 

supt J | f2(t, 0) |.  Inequalities  (c) and (d) imply that 

 

 sup |(t)|    ( b - a) |||| L
1
 (r) [ M0 r + c0 ]  and 

t J 

 

 sup |(t)|    ( b - a) |||| L
1 (r) [ M1 r + c1 + m1 ( M2R + c2)r ]   

 

              + |||| L
1
 (r) [ M0 r + c0 ], 

  

thus  

 

 0
0 0 1 1 2 2

0
1

,

( ) max
max 1,

M
M r c M m M R c r

b a b a
r M r

b a c
c

b a

  
          

   
  

 

 

since  r = ||u||AC
1
  and  0 <  < 1. This is a contradiction to  (3.9), and hence the conclusion 

(ii) is not valid. Consequently, the conclusion (i) is valid, and the  FBVP (1.1) has a 

solution in  B(0, r). 

Remark 3.1 :  The FBVP (1.1) has a nonzero solution if all the conditions of Theorem 3.1 

are satisfied and there exists a subset  I  of the interval  J  such that means( I ) > 0 and  g(s, 

0, 0)  0  whenever  s  I. 

 

Proposition 3.1.  Assume that there exist real numbers  r > 0  and  R > 0  such that the 

hypothesis (A0) – (A2) hold,  f   is  only function of variable  x  i.e.  f( t, x ) = q( x )   0,  and  

(A3) 

  | q( x ) - q( y ) |   a0 | x – y |  and 

  | q( x ) - q( y ) |   a1 | x – y |  whenever  | x |, | y|   R,    (3.14) 

 where  a0  and  a1  are positive constants. 

Suppose that  

M(r) max { a0 , m1( M0 R+ q1 )} < 1    (3.15) 

Where  M(r) = max {1, b- a } |||| L
1
 (r),  q0 = |q ( 0 )| and  q1 = |q ( 0 )|, and 

max { a0 R+ q0 , m1R ( a1 R+ q1 )} < R/M   (3.16) 

and 

     ( b – a)           a0 r+ q0 

 r >    M(r) max    a0 r+q0 , m1r ( a1R + q1)+         . 

          max {1, b- a}                              b - a 

           (3.17) 
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Then  FBVP (1.1) has a solution   x  AC
1
(J, R)  with  ||x||AC

1
   r. 

 

Proof :  Since  operator  T  is the same as in the proof of Theorem 3.1 we only need to 

show  that operator  Ax( t ) = q( x( (t) ))  maps every function  xB(0, R)  into the ball  

B(0, R/M)  condition (b) of  Proposition 2.1 is valid. 

 In the same way as in the proof of  Proposition 3.1 we can show that the derivative  

(t) x( (t) )q( x( (t) ))  is absolutely continuous whenever  x  B(0, R). Now assume  

that  x  B(0, R). Then 

| Ax(t) |   =  | q( x(  (t) )) |   | q( x( (t) )) - q(0)|  + | q(0) | 

 a0 | x( (t) ) | + | q(0)|   a0 R + q0  

where   q0  = | q(0) |  and 

|(Ax)(t)|  =  | (t) x( (t) ) q( x( (t) )) |  

 | (t)| | x( (t) ) | ( | q( x( (t) )) - q(0)|  + | q(0) | )  

 m1 R( a1 R + q1 ), 

where   q1  = | q(0) |,  so that by inequality (3.16) 

|| Ax || AC
1
   max { a0 R+ q0 , m1R ( a1 R+ q1 )}   R/M,   

whenever  x  B(0, R). 

Moreover, if  x, y  B(0, R) , then 

 | Ax(t) - Ay(t) | = | q( x( (t) )) - q( y( (t) )) |   a0 | x( (t) ) -  y( (t) )| 

and 

|(Ax)(t) - (Ay)(t)| = |(t)x( (t)) q( x( (t))) - (t) y((t))q(y((t))) |  

 m1 ( | x( (t) )) || q( x( (t) )) - q( y( (t))) | 

+  | q( y( (t))) || x( (t) ) - y( (t) )| ) 

 m1 (a1R | x( (t) ) - y( (t) )|  

+ (a1R + q1 ) | x( (t) ) - y( (t) )| ) 

 

hence 

|| Ax - Ay ||AC
1
   max { a0 , m1 ( a1 R+ q1 )} || x – y ||AC

1 
 

Choose    = max { a0 , m1 ( a1 R+ q1 )}, then  A  is a Lipschitz operator in  B(0, R)  and  

inequality  (3.15) implies that  M < 1. Now by Proposition 2.1  FBVP (1.1) has a solution  

x  AC
1
(J, R)  with || x ||AC

1 
 R,  if  R  r. Otherwise conclusion (i) or (ii) of Proposition 

2.1 is valid. Suppose  u  is a solution of the operator equation 

  u( t) = A (( 1/) u( t )) Tu (t), t  J. 

The same way as in Theorem 3.1 we can show that 

 sup | u( t) |  max {1, b – a } |||| L
1(r) [ a0 r +  q0 ] 

tJ 

and sup | u( t) |  max {1, b – a} |||| L
1(r) [m1 r( a1 r+ q1 )] 

tJ   + |||| L
1(r) [ a0 r +  q0 ] , 
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thus 

     ( b – a)          a0 r+ q0 

 r     M(r) max    a0 r+ q0 , m1r ( a1R + q1)+         . 

           max {1, b- a}                              b - a 

This is a contradiction to  (3.17), so that the FBVP (1.1) has a solution in B(0, R). 

Hence proved. 
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